Haciendo el diagrama de cuerpo libre de la porción A C2.
Aplicando las ecuaciones de equilibrio:
De donde puede obtener el valor de Y2.
Con las ecuaciones:
Obtenemos las componentes de fuerza T que representa la tensión en la porción de cable situado a la derecha del punto C2. Observamos que Tcos = -AX; la componente horizontal de la tensión T es la misma en cualquier punto del cable.
Por tanto la tensión T es máxima cuando cos q es mínimo, es decir, en la porción del cable que tiene el máximo ángulo de inclinación que evidentemente, esta porción de cable debe ser adyacente a uno de los dos soportes del cable.
Por su flexibilidad, los cables cambian su forma de acuerdo a las cargas a las que está sometida y pueden dividirse en dos categorías: Cables que sostienen cargas distribuidas y Cables que soportan cargas concentradas para este último.
Un cable no constituye una estructura auto portante a menos de contar con medios y procedimientos para absorber su empuje. Por su simplicidad, versatilidad, resistencia y economía, los cables se han convertido en un elemento imprescindible en muchas obras de ingeniería. Los cables son ampliamente utilizados por sus características particulares de peso, resistencia y flexibilidad, en realidad los cables no son perfectamente flexibles, ya que ofrecen resistencia a ser doblados, pero esta fuerza es tan pequeña en comparación con la fuerza que pueden resistir que pueden despreciarse y las cargas concentradas son aquellas que tienen un solo punto de aplicación.
Cables con Cargas Distribuidas.
Considérese un cable que está unido a dos puntos fijos A y B y que soporta una carga distribuida. En la sección anterior se vio que, para un cable que soporta cargas concentradas, la fuerza interna en cualquier punto es una fuerza de tensión dirigida a lo largo del cable. En el caso de un cable que soporte una carga distribuida, éste cuelga tomando la forma de una curva y la fuerza interna en un punto D es una fuerza de tensión T dirigida a lo largo de la tangente de la curva. En esta sección, se aprenderá a determinar la tensión en cualquier punto de un cable que soporta una carga distribuida dada.
Cables con Cargas Concentradas.
Los cables se utilizan en muchas aplicaciones ingenieriles, tales como puentes colgantes, líneas de transmisión, teleféricos, contravientos para torres altas, entre otros. Los cables pueden dividirse en dos categorías de acuerdo con las cargas que actúan sobre estos.
Considérese un cable unido a dos puntos fijos A y B y que soportan cargas concentradas verticales P1, P2…….Pn. se supone que el cable es flexible, esto es que su resistencia a la reflexión es pequeña y puede despreciarse. Además, también se supone que el peso del cable es susceptible de ser ignorado en comparación con las cargas que soporta
Por lo tanto, cualquier porción del cable entre dos cargas consecutivas se puede considerar como un elemento sometido a la acción de dos fuerzas y, por consiguiente, las fuerzas internas en cualquier punto del cable se reducen a una fuerza de tensión dirigida a lo largo del cable.
Se supone que cada una de las cargas se encuentran en una línea vertical dada, esto es, que la distancia horizontal desde el apoyo A hasta cada una de las cargas es conocida; además, también se supone que las distancias horizontal y vertical entre los apoyos son conocidas.
Cables Sometidos a Cargas Uniformemente Distribuidas en la Proyección Horizontal.
Se considera que el peso produce una carga uniformemente distribuida en la proyección horizontal, caso de cables cuya relación flecha/longitud es pequeña.
Cables Parabólicos.
Cuando un hilo está sometido a una carga uniforme por unidad de proyección horizontal, dicho hilo adquiere la forma de una parábola si se desprecia su peso propio respecto al de la carga que debe soportar. Este caso se presenta, en la práctica, en el cálculo de puentes colgantes, en los que el peso del tablero es mucho mayor que el del cable que lo sustenta.
El tablero, o base del puente colgante, lo podemos representar por una carga vertical, p (N/m), uniformemente distribuida a lo largo de la proyección horizontal del cable. La transmisión de carga del tablero al cable se realiza mediante unos cables verticales denominados tirantes, también de peso despreciable frente al del tablero.
Cables en Forma de Catenaria.
Llamando wpp la carga por unidad de longitud (medida a lo largo del cable), encontramos que la magnitud W de la carga total soportada por una porción de cable de longitud s medida desde el punto más bajo a un punto a lo largo del cable es W = ws.
Cables Sometidos a Cargas Concentradas
Para determinar la tensión en cada tramo se empieza por determinar las reacciones. Estas comprenden cuatro incógnitas lo cual hace que el sistema sea estáticamente indeterminado.
Para poder obviar esta indeterminación es necesario conocer la posición de un punto del cable. Supongamos que se conoce la posición de la carga P2 con coordenadas (x2, y2).
Lo cual indica que la componente horizontal de la tensión en cualquier tramo es constante.
Se toman los momentos con respecto al punto B se obtiene una relación entre Ax y Ay. Luego, tomamos los momentos con respecto al punto D se obtiene otra relación entre Ax y Ay que con la anterior se pueden resolver simultáneamente para determinar Ax y Ay.
Una vez determinadas las reacciones en A se obtiene By, y como Bx = -Ax quedan completamente las reacciones. Habiéndose determinado las reacciones se puede tomar cualquier porción del cable para hallar la tensión correspondiente.